大多数压力传感器的静态特性与环境温度有着密切的联系。实际工作中由于传感器的工作环境温度变化较大.又由于温度变化引起的热输出也较大,这将会带来较大的测量误差;继而影响到压力传感器的静态特性,所以设计中必须采取措施以减少或消除温度变化带来的测量影响。
压力传感器是把压力的变化转换成电阻值的变化来进行测量的,通常压力传感器输出的微小信号需通过后续的放大器进行放大,再传输给处理电路才能进行压力的检测。其阻值随压力的变化而变化。在传感器的应用中,为使传感器的技术指标及性能不受温度变化影响而采取一系列具体技术措施。称为温度补偿技术。一般传感器都在标准温度(20±5)℃下标定,但其工作环境温度也可能由零下几十摄氏度升到零上几十摄氏度。传感器由多个环节组成。尤其是金属材料和半导体材料制成的敏感元件,其静特性与温度有着密切的关系。信号调理电路的电阻、电容等元件特性基本不随温度变化。所以必须采取有效措施以抵消或减弱温度变化对传感器特性造成的影响。即必须进行压力传感器的温度补偿。
压力传感器在领域的发展
1.压力传感器的向下垂直行业,包括石油、汽车和保健的技术进步导致了多种应用程序以及压力传感器功能的演变。
2.汽车领域一直是压力传感器的重要的客户之一,近几年汽车生产的激增,带来了对压力传感器和相关组件的需求不断增加。
3.机动车安全已成为整个汽车行业的重要方面之一,围绕此项特性制定的严格的法规有助于促进汽车行业压力传感器的整体需求增长。
4.消费电子压力传感器使用量大大增加,成为整个市场发展快的应用领域。
压力传感器工作原理
1.折叠半导体压电阻
半导体压电阻抗扩散压力传感器是在薄片表面形成半导体变形压力,通过外力(压力)使薄片变形而产生压电阻抗效果,从而使阻抗的变化转换成电信号。
2.折叠静电容量型压力传感器
静电容量型压力传感器,是将玻璃的固定极和硅的可动极相对而形成电容,将通过外力(压力)使可动
极变形所产生的静电容量的变化转换成电气信号。 (E8Y的动作原理便是静电容量方式,其他机种采用半导体方式)。